Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Hematol ; 99(4): 642-661, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38164980

RESUMEN

Optical Genome Mapping (OGM) is rapidly emerging as an exciting cytogenomic technology both for research and clinical purposes. In the last 2 years alone, multiple studies have demonstrated that OGM not only matches the diagnostic scope of conventional standard of care cytogenomic clinical testing but it also adds significant new information in certain cases. Since OGM consolidates the diagnostic benefits of multiple costly and laborious tests (e.g., karyotyping, fluorescence in situ hybridization, and chromosomal microarrays) in a single cost-effective assay, many clinical laboratories have started to consider utilizing OGM. In 2021, an international working group of early adopters of OGM who are experienced with routine clinical cytogenomic testing in patients with hematological neoplasms formed a consortium (International Consortium for OGM in Hematologic Malignancies, henceforth "the Consortium") to create a consensus framework for implementation of OGM in a clinical setting. The focus of the Consortium is to provide guidance for laboratories implementing OGM in three specific areas: validation, quality control and analysis and interpretation of variants. Since OGM is a complex technology with many variables, we felt that by consolidating our collective experience, we could provide a practical and useful tool for uniform implementation of OGM in hematologic malignancies with the ultimate goal of achieving globally accepted standards.


Asunto(s)
Neoplasias Hematológicas , Humanos , Hibridación Fluorescente in Situ , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Cariotipificación , Mapeo Cromosómico
2.
Am J Hum Genet ; 108(8): 1409-1422, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34237280

RESUMEN

Chromosomal aberrations including structural variations (SVs) are a major cause of human genetic diseases. Their detection in clinical routine still relies on standard cytogenetics. Drawbacks of these tests are a very low resolution (karyotyping) and the inability to detect balanced SVs or indicate the genomic localization and orientation of duplicated segments or insertions (copy number variant [CNV] microarrays). Here, we investigated the ability of optical genome mapping (OGM) to detect known constitutional chromosomal aberrations. Ultra-high-molecular-weight DNA was isolated from 85 blood or cultured cells and processed via OGM. A de novo genome assembly was performed followed by structural variant and CNV calling and annotation, and results were compared to known aberrations from standard-of-care tests (karyotype, FISH, and/or CNV microarray). In total, we analyzed 99 chromosomal aberrations, including seven aneuploidies, 19 deletions, 20 duplications, 34 translocations, six inversions, two insertions, six isochromosomes, one ring chromosome, and four complex rearrangements. Several of these variants encompass complex regions of the human genome involved in repeat-mediated microdeletion/microduplication syndromes. High-resolution OGM reached 100% concordance compared to standard assays for all aberrations with non-centromeric breakpoints. This proof-of-principle study demonstrates the ability of OGM to detect nearly all types of chromosomal aberrations. We also suggest suited filtering strategies to prioritize clinically relevant aberrations and discuss future improvements. These results highlight the potential for OGM to provide a cost-effective and easy-to-use alternative that would allow comprehensive detection of chromosomal aberrations and structural variants, which could give rise to an era of "next-generation cytogenetics."


Asunto(s)
Aberraciones Cromosómicas , Trastornos de los Cromosomas/diagnóstico , Mapeo Cromosómico/métodos , Análisis Citogenético/métodos , Variaciones en el Número de Copia de ADN , Genoma Humano , Análisis por Micromatrices/métodos , Trastornos de los Cromosomas/genética , Humanos , Cariotipificación
3.
Genes Chromosomes Cancer ; 56(7): 524-534, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28236351

RESUMEN

Karyotyping is considered as the gold standard in the genetic subclassification of myelodysplastic syndrome (MDS). Oligo/SNP-based genomic array profiling is a high-resolution tool that also enables genome wide analysis. We compared karyotyping with oligo/SNP-based array profiling in 104 MDS patients from the HOVON-89 study. Oligo/SNP-array identified all cytogenetically defined genomic lesions, except for subclones in two cases and balanced translocations in three cases. Conversely, oligo/SNP-based genomic array profiling had a higher success rate, showing 55 abnormal cases, while an abnormal karyotype was found in only 35 patients. In nine patients whose karyotyping was unsuccessful because of insufficient metaphases or failure, oligo/SNP-based array analysis was successful. Based on cytogenetic visible abnormalities as identified by oligo/SNP-based genomic array prognostic scores based on IPSS/-R were assigned. These prognostic scores were identical to the IPSS/-R scores as obtained with karyotyping in 95%-96% of the patients. In addition to the detection of cytogenetically defined lesions, oligo/SNP-based genomic profiling identified focal copy number abnormalities or regions of copy neutral loss of heterozygosity that were out of the scope of karyotyping and fluorescence in situ hybridization. Of interest, in 26 patients we demonstrated such cytogenetic invisible abnormalities. These abnormalities often involved regions that are recurrently affected in hematological malignancies, and may therefore be of clinical relevance. Our findings indicate that oligo/SNP-based genomic array can be used to identify the vast majority of recurrent cytogenetic abnormalities in MDS. Furthermore, oligo/SNP-based array profiling yields additional genetic abnormalities that may be of clinical importance.


Asunto(s)
Cariotipificación/estadística & datos numéricos , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Cariotipo Anormal , Humanos , Valor Predictivo de las Pruebas , Estudios Prospectivos
4.
Mol Cytogenet ; 7(1): 3, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24401281

RESUMEN

BACKGROUND: Characteristic genomic abnormalities in patients with B cell chronic lymphocytic leukemia (CLL) have been shown to provide important prognostic information. Fluorescence in situ hybridization (FISH) and multiplex ligation-dependent probe amplification (MLPA), currently used in clinical diagnostics of CLL, are targeted tests aimed at specific genomic loci. Microarray-based genomic profiling is a new high-resolution tool that enables genome-wide analyses. The aim of this study was to compare two recently launched genomic microarray platforms, i.e., the CytoScan HD Array (Affymetrix) and the HumanOmniExpress Array (Illumina), with FISH and MLPA to ascertain whether these latter tests can be replaced by either one of the microarray platforms in a clinical diagnostic setting. RESULT: Microarray-based genomic profiling and FISH were performed in all 28 CLL patients. For an unbiased comparison of the performance of both microarray platforms 9 patients were evaluated on both platforms, resulting in the identification of exactly identical genomic aberrations. To evaluate the detection limit of the microarray platforms we included 7 patients in which the genomic abnormalities were present in a relatively low percentage of the cells (range 5-28%) as previously determined by FISH. We found that both microarray platforms allowed the detection of copy number abnormalities present in as few as 16% of the cells. In addition, we found that microarray-based genomic profiling allowed the identification of genomic abnormalities that could not be detected by FISH and/or MLPA, including a focal TP53 loss and copy neutral losses of heterozygosity of chromosome 17p. CONCLUSION: From our results we conclude that although the microarray platforms exhibit a somewhat lower limit of detection compared to FISH, they still allow the detection of copy number abnormalities present in as few as 16% of the cells. By applying similar interpretation criteria, the results obtained from both platforms were comparable. In addition, we conclude that both microarray platforms allow the identification of additional potential prognostic relevant abnormalities such as focal TP53 deletions and copy neutral losses of heterozygosity of chromosome 17p, which would have remained undetected by FISH or MLPA. The prognostic relevance of these novel genomic alterations requires further evaluation in prospective clinical trials.

5.
Am J Med Genet A ; 143A(10): 1038-44, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17431901

RESUMEN

A 10-year-old boy with vermis hypoplasia, dilatation of the fourth ventricle, enlarged cisterna magna and aplasia of the corpus callosum, consistent with the Dandy-Walker complex (DWC), and slight facial dysmorphisms, severe motor and mental retardation is presented. By combining data obtained by karyotyping, array-CGH, FISH, and multiplex ligation-mediated probe amplification (MLPA) we identified a 5 Mb deletion of the 1q44 --> qter region resulting from a paternal t(1;20)(q44;q13.33). This smallest 1q44 deletion reported so far, enabled us to significantly narrow down the number of candidate genes for the DWC in this region. Since the ZNF124 transcription factor is strongly expressed in the fetal brain it may represent a candidate gene for the DWC at 1q44.


Asunto(s)
Cromosomas Humanos Par 1 , Síndrome de Dandy-Walker/genética , Padre , Eliminación de Gen , Translocación Genética , Niño , Bandeo Cromosómico , Mapeo Cromosómico , Cromosomas Humanos Par 20 , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...